

Proton-therapy and concurrent chemotherapy in stage III NSCLC: Effects on Durvalumab eligibility and safety profile

Francesco Cortiula¹, Dirk De Ruysscher², Safiye Dursun³, Michelle Steens⁴, Gerben Bootsma⁴, Richard Canters², Ilaria Rinaldi², Vicki Taasti², Ruud Houben², Kobe Reynders², Stéphanie Peeters², Antonio Angrisani², Djoya Hattu² and Lizza Hendriks³

1 Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center+, Maastricht, The Netherlands; Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands. 3 Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands 4 Department of Pulmonary Diseases, Zuyderland Medical Centre, 6162 BG Geleen, The Netherlands

Dr. Srinivas Chilukuri

Professor & Senior Consultant Department of Radiation Oncology Apollo Proton Cancer Centre, Chennai

INTRODUCTION

<u>RTC</u> Median OS 5-year sur	0 <u>G 0617</u> S- 28.7 months rvival of 32%		<u>PACIFIC TRIAL</u> Median OS- 47.5 months With 5-year OS-43%			
Trial	2 yr OS	2 yr PFS	5yr PFS	5 yr OS		

RTOG 0617	60%	31%	20%	32%
PACIFIC	66%	50%	33%	43%

TABLE 2. Maximum Treatment-Related Adverse Events by Arm

Arm, No. (%)							
A: 60 Gy (n = 152)	B: 74 Gy (n = 107)	C: 60 Gy + Cetuximab $(n = 137)$	D: 74 Gy + Cetuximab (n = 100)				
42 (27.6)	32 (29.9)	20 (14.6)	10 (10.0)				
110 (72.4)	75 (70.1)	117 (85.4)	90 (90.0)				
.0002							
	A: 60 Gy (n = 152) 42 (27.6) 110 (72.4) .0002	A: 60 Gy (n = 152) B: 74 Gy (n = 107) 42 (27.6) 32 (29.9) 110 (72.4) 75 (70.1) .0002 .0002	Arm, No. (%) A: 60 Gy (n = 152) B: 74 Gy (n = 107) C: 60 Gy + Cetuximab (n = 137) 42 (27.6) 32 (29.9) 20 (14.6) 110 (72.4) 75 (70.1) 117 (85.4) .0002 .0002 .0002				

 $^{*}\chi^{2}$ test, 2-sided.

PROTONS- PHYSICAL ADVANTAGE

Structure	Dose parameter	Dosimetry achieved with IMRT (as provided)	Dosimetry achieved with IMPT
CTV	D99	57.96 Gy	58.95 Gy
PTV	D95	56.92 Gy	97.9 Gy
Heart	Mean Dose	29.8 Gy	7.2 Gy
Thyroid	Mean Dose	10.6 Gy	5.6 Gy
Total Lung-CTV	Mean Dose	19.7Gy	12 Gy
	V20	36%	22.4%
	V5	61.5%	35.5%
Right Lung-CTV	Mean Dose	9.4 Gy	4 Gy
	V20	14.3%	7%
	V5	39.5%	15%

PROTON THERAPY-BIOLOGICAL ADVANTAGE

IMMUNOLOGICAL ADVANTAGE

- NSCLC is immune hot with increased spatial infiltration of T cells in tumor & microenvironment.
- RT has immune priming effect

Central Dogma- circulating T Lymphocytes

LD50 of Lymphocytes- 2 Gy DNA damage can occur at doses as low as 0.5 Gy

Risk and impact of radiation related lymphopenia in lung cancer: A systematic review and meta-analysis

Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Rando	om, 95% CI	
Campian 2013	0.5306	0.3846	2.9%	1.70 [0.80, 3.61]	2013	-		
Tang 2014	0.5277	0.2443	6.6%	1.70 [1.05, 2.74]	2014			
Cho 2015	0.9632	0.4027	2.6%	2.62 [1.19, 5.77]	2015			
Tang 2017	0.4055	0.1582	13.7%	1.50 [1.10, 2.05]	2017			
Wang 2019	0.7208	0.1712	12.1%	2.06 [1.47, 2.88]	2019	\sim		
Zhao 1 2019	0.7701	0.302	4.5%	2.16 [1.20, 3.90]	2019	03		
Zhao 2019	1.7778	0.6988	0.9%	5.92 [1.50, 23.28]	2019			
Abravan 1 2020	0.239	0.3577	3.3%	1.27 [0.63, 2.56]	2020	_	+•	
Abravan 2020 SCLC	0.2546	0.1299	18.2%	1.29 [1.00, 1.66]	2020			
Chen 2020	0.392	0.1765	11.5%	1.48 [1.05, 2.09]	2020			
Abravan 2020 NSCLC	0.4055	0.1054	23.7%	1.50 [1.22, 1.84]	2020		*	
Total (95% CI)			100.0%	1.59 [1.40, 1.81]			•	
Heterogeneity: Tau ^a = 0.	01; Chi ² = 11.98, df =	10 (P =	0.29); *=	17%		tan di	<u> </u>	
Test for overall effect Z = 6.94 (P < 0.00001)						0.01 0.1 No Severe Lymphopenia	1 10 Severe Lymphopenia	10

Significant reduced risk of progression and death in pts without severe lymphopenia during RT.

Lung V5, Heart V5 and MLD are surrogate markers to dose received by circulating lymphocytes.

Especially Important in pts with other risk factors like advanced age, lower baseline lymphocyte counts, higher stage and large tumor size.

0

0				Hazard Ratio		Hazar	d Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Rando	om, 95% CI	
Tang 2014	0.6152	0.2188	16.3%	1.85 [1.20, 2.84]	2014			
Cho 2015	0.9322	0.3618	10.0%	2.54 [1.25, 5.16]	2015			
Tang 2017	0.3365	0.123	21.6%	1.40 [1.10, 1.78]	2017		-	
Zhao 1 2019	0.6087	0.2354	15.4%	1.84 [1.16, 2.92]	2019			
Zhao 2019	1.6982	0.4488	7.6%	5.46 [2.27, 13.17]	2019	DEC		
Wang 2019	0.9578	0.1609	19.5%	2.61 [1.90, 3.57]	2019	PF3		
Chen 2020 Conventional	1.0217	0.5162	6.2%	2.78 [1.01, 7.64]	2020			
Chen 2020 SBRT	0.1054	0.7484	3.4%	1.11 [0.26, 4.82]	2020			
Total (95% CI)			100.0%	2.10 [1.57, 2.81]			•	
Heterogeneity, Tau# = 0.09	Chi# = 17.28, df = 7	(P = 0.02)); I ² = 599	6		to all	1	
Test for overall effect: Z = 5	.04 (P < 0.00001)					0.01 0.1 No Severe Lymphopenia	Severe Lymphopenia	10

STUDY QUESTIONS

Can proton therapy in combination with concurrent chemotherapy improve eligibility to receive maintenance immunotherapy ?

Can proton therapy be safely combined with maintenance immunotherapy ?

METHOD

- Study design: retrospective data collection from 2-center prospectively collected lists (226 patients).
- Population: Stage III NSCLC, receiving CCRT between June'16 and Feb'21, staged with FDG-PET and brain imaging.
- Main exclusion criteria: previous cancer diagnosis-within 2 years and previous thoracic RT.

Variable	Overall (n=67)	Protons (n= 28)	Photons (n=39)	p. value
Age – years Median (Range)	66 (35-79)	66 (35-77)	67 (49-79)	0.9
Male (%)	52.2	57.1	48.7	0.49
Tumor Stage - no. (%) IIIA IIIB IIIC	25 (37.3) 38 (56.7) 4 (6)	10 (35.7) 17 (60.7) 1 (3.6)	15 (38.5) 21 (53.8) 3 (7.7)	0.7
PD-L1 % 0-49 ≥ 50% Unknown	31 (46) 20 (30) 16 (24)	10 (35.7) 8 (28.8) 10 (35.7)	21 (53) 13 (33) 5 (12)	0.2
WHO PS after CCRT At day 21 (0-1/≥2)	80.6%/ 19.4%	92.9%/ 7.1%	71.8%/ 28.2%	0.032
Immune related adverse events - no. (%) Any grade Grade ≥ 3	18 (26.9) 5 (7.4)	6 (21.4) 3 (10)	12 (30.8) 2 (5)	0.062
Pneumonitis rate during Durvalumab - no. (%) Any grade Grade ≥ 3	16 (26) 4 (6)	7 (25) 2 (7)	9 (23) 2 (5.1)	0.8
Median FU - months	14	9.5	19.5	<0.001

Results

- IRAEs of any grade were reported in 21% vs 31% of pts treated with IMPT and IMRT (NS).
- Hypothyroidism accounted for 44% of IRAEs.
- Pneumonitis during Durvalumab was reported in 25% of IMPT and 23% of IMRT (NS).

At day 21 after CCRT, 93% (IMPT) vs 72% (IMRT) treated pts had a PS≤1 (OR 0.8, p=0.03).

CONCLUSION OF THE STUDY

- PS at day 21 after CCRT was better in patients treated with IMPT, thus potentially increasing eligibility for adjuvant Durvalumab.
- The lower Radiotherapy dose delivered with IMPT might explain our findings.
- IMPT appears to be as safe as IMRT regarding IRAEs.

Strength

Weakness

- I. Unique combination of protons with immunotherapy.
- 2. Several theoretical advantages were being tested.
- 3. Modern proton therapy used for treatment

I. Retrospective data.

- 2. Small sample size
- 3. No dosimetry reported yet; neither are detailed acute/late toxicities
- 4. No outcomes reported

Opportunities

- I. Potentially more pts could be eligible for immuno-RT combination.
- 2. Potential for reducing toxicities during concurrent immune.
- 3. Reduced pneumonitis & cardiovascular risk
- Opportunity to improve outcomes especially in challenging situations- LL primaries, N3, multicentric, unhealthy lungs etc.

Threat

I. Financial toxicity due to combining two expensive modalities.